Previous Up Next

Chapter 3  Strategies

3.1  Introduction to strategies

3.1.1  Elementary strategy

There exists three kinds of elementary strategy: Fail, which always fails, Identity, which always succeeds, and transformation rules of the form lr.
Therefore, if we consider the elementary strategy a ⇒b (which replaces a by b), we have the following results:
  (a -> b)[a]      = b
  (a -> b)[b]      = failure
  (a -> b)[f(a)]   = failure
  (Identity)[a]    = a
  (Identity)[b]    = b
  (Identity)[f(a)] = f(a)
  (Fail)[a]        = failure


3.1.2  Basic combinators

Composition

The sequential operator, Sequence(S1,S2), applies the strategy S1, and then the strategy S2. It fails if either S1 fails, or S2 fails.
  (Sequence(a -> b, b -> c))[a] = c
  (Sequence(a -> b, c -> d))[a] = failure
  (Sequence(b -> c, a -> b))[a] = failure


Choice

The choice operator, Choice(S1,S2), applies the strategy S1. If the application S1 fails, it applies the strategy S2. Therefore, Choice(S1,S2) fails if both S1 and S2 fail.
  (Choice(a -> b, b -> c))[a]   = b
  (Choice(b -> c, a -> b))[a]   = b
  (Choice(b -> c, c -> d))[a]   = failure
  (Choice(b -> c, Identity))[a] = a


Not

The strategy Not(S), applies the strategy and fails when S succeeds. Otherwise, it succeeds and corresponds to the Identity.
  (Not(a -> b))[a]   = failure
  (Not(b -> c))[a]   = a


3.1.3  Parameterized strategies

By combining basic combinators, more complex strategies can be defined. To make the definitions generic, parameters can be used. For example, we can define the two following strategies:
  (Try(b -> c))[a]                    = a
  (Repeat(a -> b))[a]                 = b
  (Repeat(Choice(b -> c, a -> b)))[a] = c
  (Repeat(b -> c))[a]                 = a


3.1.4  Traversal strategies

We consider two kinds of traversal strategy (All(S) and One(S)). The first one applies S to all subterms, whereas the second one applies S to only one subterm.

All

The application of the strategy All(S) to a term t applies S on each immediate subterm of t. The strategy All(S) fails if S fails on at least one immediate subterm.
  (All(a -> b))[f(a)]        = f(b)
  (All(a -> b))[g(a,a)]      = g(b,b)
  (All(a -> b))[g(a,b)]      = failure
  (All(a -> b))[a]           = a
  (All(Try(a -> b)))[g(a,c)] = g(b,c)
Note: the application of All(S) to a constant never fails: it returns the constant itself.


One

The application of the strategy One(S) to a term t tries to apply S on an immediate subterm of t. The strategy One(S) succeeds if there is a subterm such that S can be applied. The subterms are tried from left to right.
  (One(a -> b))[f(a)]   = f(b)
  (One(a -> b))[g(a,a)] = g(b,a)
  (One(a -> b))[g(b,a)] = g(b,b)
  (One(a -> b))[a]      = failure
Note: the application of One(S) to a constant always fails: there is no subterm such that S can be applied.


3.1.5  High level strategies

By combining the previously mentioned constructs, it becomes possible to define well know strategies:
  BottomUp(S)     = Sequence(All(BottomUp(S)), S)
  TopDown(S)      = Sequence(S, All(TopDown(S)))
  OnceBottomUp(S) = Choice(One(OnceBottomUp(S)), S)
  OnceTopDown(S)  = Choice(S, One(OnceTopDown(S)))
  Innermost(S)    = Repeat(OnceBottomUp(S))
  Outermost(S)    = Repeat(OnceTopDown(S))


3.2  Strategies in practice

Let us consider again a Pico language whose syntax is a bit simpler than the one seen in section 1.4.
import pico2.term.types.*;
import java.util.*;
import jjtraveler.VisitFailure;
import jjtraveler.reflective.VisitableVisitor;

class Pico2 {
  %include { mutraveler.tom }

  %gom {
    module Term
    imports int String

    abstract syntax
    Bool = True()
         | False()
         | Neg(b:Bool)
         | Or(b1:Bool, b2:Bool)
         | And(b1:Bool, b2:Bool)
         | Eq(e1:Expr, e2:Expr)

    Expr = Var(name:String)
         | Cst(val:int)
         | Let(name:String, e:Expr, body:Expr)
         | Seq( Expr* )
         | If(cond:Bool, e1:Expr, e2:Expr)
         | Print(e:Expr)
         | Plus(e1:Expr, e2:Expr)
  }
  ...
}
As an exercise, we want to write an optimization function that replaces an instruction of the form If(Neg(b),i1,i2) by a simpler one: If(b,i2,i1). A possible implementation is:
  public static Expr opti(Expr expr) {
    %match(expr) {
      If(Neg(b),i1,i2) -> { return `opti(If(b,i2,i1)); }
      x -> { return `x; }
    }
    throw new RuntimeException("strange term: " + expr);
  }

  public final static void main(String[] args) {
    Expr p4 = `Let("i",Cst(0),
                 If(Neg(Eq(Var("i"),Cst(10))),
                    Seq(Print(Var("i")), Let("i",Plus(Var("i"),Cst(1)),Var("i"))),
                    Seq()));

    System.out.println("p4       = " + p4);
    System.out.println("opti(p4) = " + opti(p4));
  }
When executing this program, we obtain:
p4       = Let("i",Cst(0),If(Neg(Eq(Var("i"),Cst(10))),
           ConsSeq(Print(Var("i")),ConsSeq(Let("i",
           Plus(Var("i"),Cst(1)),Var("i")),EmptySeq)),EmptySeq))
opti(p4) = Let("i",Cst(0),If(Neg(Eq(Var("i"),Cst(10))),
           ConsSeq(Print(Var("i")),ConsSeq(Let("i",
           Plus(Var("i"),Cst(1)),Var("i")),EmptySeq)),EmptySeq))
This does not correspond to the expected result, simply because the opti function performs an optimization when the expression starts with an If instruction. To get the expected behavior, we have to add congruence rules that will allow to apply the rule in subterms (one rule for each constructor):
  public static Expr opti(Expr expr) {
    %match(expr) {
      If(Neg(b),i1,i2) -> { return `opti(If(b,i2,i1)); }
      // congruence rules
      Let(n,e1,e2)     -> { return `Let(n,opti(e1),opti(e2)); }
      Seq(head,tail*)  -> { return `Seq(opti(head),opti(tail*)); }
      If(b,i1,i2)      -> { return `If(b,opti(i1),opti(i2)); }
      Print(e)         -> { return `Print(e); }
      Plus(e1,e2)      -> { return `Plus(e1,e2); }
      x -> { return `x; }
    }
    throw new RuntimeException("strange term: " + expr);
  }
Since this is not very convenient, we will show how the use of strategies can simplify this task.

3.2.1  Printing constants using a strategy

Let us start with a very simple task which consists in printing all the nodes that corresponds to a constant (Cst(_). To do that, we have to define an elementary strategy that is successful when it is applied on a node Cst(_):
  %strategy stratPrintCst() extends `Fail() {
    visit Expr {
      Cst(x) -> { System.out.println("cst: " + `x); }
    }
  }
Note: this strategy extends Fail. This means that its application leads to a failure when it cannot be applied. In our case, the strategy succeeds on nodes of the form Cst(x), and fails on all the others.
To traverse the program and print all Cst nodes, a TopDown strategy can be applied:
  public static void printCst(Expr expr) {
    try {
      `TopDown(Try(stratPrintCst())).visit(expr);
    } catch (VisitFailure e) {
      System.out.println("strategy failed");
    }
  }

  public final static void main(String[] args) {
    ...
    System.out.println("p4 = " + p4);
    printCst(p4);
  }
Note: the strategy given as argument of a TopDown should not fail. Otherwise, the TopDown will also fail. This is why the stratPrint is wrapped into a Try, which makes the strategy always successful.
This results in:
p4 = Let("i",Cst(0),If(Neg(Eq(Var("i"),Cst(10))),
     ConsSeq(Print(Var("i")),ConsSeq(Let("i",
     Plus(Var("i"),Cst(1)),Var("i")),EmptySeq)),EmptySeq))
cst: 0
cst: 10
cst: 1


3.2.2  Combining elementary strategies

As a second exercise, we will try to write another strategy that performs the same task, but we will try to separate the strategy that looks for a constant from the strategy that prints a node. So, let us define these two strategies:
  %strategy FindCst() extends `Fail() {
    visit Expr {
      c@Cst(x) -> { return `c; }
    }
  }

  %strategy PrintTree() extends `Identity() {
    visit Expr {
      x -> { System.out.println(`x); }
    }
  }
Similarly to stratPrintCst, the strategy FindCst extends Fail. The goal of the PrintTree strategy is to print a node of sort Expr. By extending Identity, we specify the default behavior when the strategy is applied on a term of a different sort.

Note: we could have extended Fail and used Try(PrintTree()) instead.
To print the node Cst, we have to look for a Cst and print this node. This can be done by combining, using a Sequence, the two strategies FindCst and PrintTree:
  public static void printCst(Expr expr) {
    try {
      `TopDown(Try(stratPrintCst())).visit(expr);
      `TopDown(Try(Sequence(FindCst(),PrintTree()))).visit(expr);
    } catch (VisitFailure e) {
      System.out.println("strategy failed");
    }
  }
This results in:
cst: 0
cst: 10
cst: 1
Cst(0)
Cst(10)
Cst(1)
Note: in the second case, the nodes are printed using the toString() method generated by Gom.


3.2.3  Modifying a subterm

Here, we will try to rename all the variables from a given program: the name should be modified into _name.

To achieve this task, you can define a primitive strategy that performs the modification, and apply it using a strategy such as TopDown:
  %strategy stratRenameVar() extends `Fail() {
    visit Expr {
      Var(name) -> { return `Var("_"+name); }
    }
  }

  public static void optimize(Expr expr) {
    try {
      `Sequence(TopDown(Try(stratRenameVar())),PrintTree()).visit(expr);
    } catch (VisitFailure e) {
      System.out.println("strategy failed");
    }
  }
Note: to print the resulting term, the TopDown application of stratRenameVar (wrapped by a Try) is combined, using a Sequence, with the strategy PrintTree.
The application of optimize to p4 results in:
Let("i",Cst(0),If(Neg(Eq(Var("_i"),Cst(10))),
  ConsSeq(Print(Var("_i")),ConsSeq(Let("i",
  Plus(Var("_i"),Cst(1)),Var("_i")),EmptySeq)),EmptySeq))
Suppose now that we want to print the intermediate steps: we do not want to perform all the replacements in one step, but for debugging purpose, we want to print the intermediate term after each application of the renaming rule.

The solution consists in combining the stratRenameVar strategy with the PrintTree strategy.
Note: you can try to implement it yourself before reading the solution
A first solution consists in applying stratRenameVar using a OnceBottomUp strategy, and immediately apply PrintTree on the resulting term. This could be implemented as follows:
`Repeat(Sequence(OnceBottomUp(stratRenameVar()),PrintTree())).visit(expr);
Unfortunately, this results in:
Let("i",Cst(0),If(Neg(Eq(Var("_i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("__i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("___i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("____i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("_____i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("______i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("_______i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("________i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("_________i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("__________i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("___________i"),Cst(10))),...
Let("i",Cst(0),If(Neg(Eq(Var("____________i"),Cst(10))),...
...
This is not the expected behavior! Why?

Simply because the renaming rule can be applied several times on a same variable. To fix this problem, we have to apply the renaming rule only if the considered variable has not already be renamed.

To know if a variable has been renamed, you just have to define an elementary strategy, called RenamedVar, that succeeds when the name of the variable starts with an underscore. This can be easily implemented using string matching capabilities:
  %strategy RenamedVar() extends `Fail() {
    visit Expr {
      v@Var(('_',name*)) -> { return `v; }
    }
  }
To finish our implementation, it is sufficient to apply stratRenameVar only when RenamedVar fails, i.e., when Not(RenamedVar) succeeds.
  `Repeat(Sequence(
        OnceBottomUp(Sequence(Not(RenamedVar()),stratRenameVar())),
        PrintTree())
      ).visit(expr);
This results in (layouts have been added to improve readability):
Let("i",Cst(0),If(Neg(Eq(Var("_i"),Cst(10))),
  ConsSeq(Print(Var("i")),ConsSeq(Let("i",
  Plus(Var("i"),Cst(1)),Var("i")),EmptySeq)),EmptySeq))
Let("i",Cst(0),If(Neg(Eq(Var("_i"),Cst(10))),
  ConsSeq(Print(Var("_i")),ConsSeq(Let("i",
  Plus(Var("i"),Cst(1)),Var("i")),EmptySeq)),EmptySeq))
Let("i",Cst(0),If(Neg(Eq(Var("_i"),Cst(10))),
  ConsSeq(Print(Var("_i")),ConsSeq(Let("i",
  Plus(Var("_i"),Cst(1)),Var("i")),EmptySeq)),EmptySeq))
Let("i",Cst(0),If(Neg(Eq(Var("_i"),Cst(10))),
  ConsSeq(Print(Var("_i")),ConsSeq(Let("i",
  Plus(Var("_i"),Cst(1)),Var("_i")),EmptySeq)),EmptySeq))


3.2.4  Re-implementing the tiny optimizer

Now that you know how to use strategies, it should be easy to implement the tiny optimizer seen in the beginning of section 3.2.

You just have to define the transformation rule and a strategy that will apply the rule in an innermost way:
  %strategy OptIf() extends `Fail() {
    visit Expr {
      If(Neg(b),i1,i2) -> { return `If(b,i2,i1); }
    }
  }

  public void optimize(Expr expr) {
    try {
      `Sequence(Innermost(OptIf()),PrintTree()).visit(expr);
    } catch (VisitFailure e) {
      System.out.println("strategy failed");
    }
  }
Applied to the program p4, as expected this results in:
Let("i",Cst(0),If(Eq(Var("i"),Cst(10)),EmptySeq,
  ConsSeq(Print(Var("i")),ConsSeq(Let("i",
  Plus(Var("i"),Cst(1)),Var("i")),EmptySeq))))
Note: when programming with strategies, it is no longer necessary to implement a congruence rule for each constructor of the signature.


3.3  Advanced usage

This section is not written yet. We just mention the titles that will be present in the next release.

3.3.1  Definition of recursive strategies

3.3.2  Definition of parameterized strategies

3.3.3  Getting a position

3.3.4  Getting or replacing a subterm

3.3.5  Probabilistic strategies

3.3.6  Programming non deterministic transition systems

See Section 16.2 in the CookBook for an example of such system implemented using strategies.


Previous Up Next