Tom Strategic rewriting in Java

Programming with rewrite rules

- Advantages
 - matching is an expressive mechanism
 - orules express elementary transformations
- Limitations
 - rewrite systems are often non-terminating and non-confluent
 - susually, we don't want to (try to) apply all the rules in the same time

Example of non-terminating rewrite system

$$(x+y)^*z \rightarrow (x^*z)+(y^*z)$$

$$z^*(x+y) \rightarrow (z^*x)+(z^*y)$$

$$(x^*z)+(y^*z) \rightarrow (x+y)^*z$$

$$(z^*x)+(z^*y) \rightarrow z^*(x+y)$$

Control rule application

- Classical solution
 - introduce a new operator f to reduce the set of rules used for normalization

 - operator f is used to control the rules to be applied

Encoding the control

distrib((x+y)*z)
$$\rightarrow$$
 (x*z)+(y*z)
distrib(z*(x+y)) \rightarrow (z*x)+(z*y)
facto((x*z)+(y*z)) \rightarrow (x+y)*z
facto((z*x)+(z*y)) \rightarrow z*(x+y)

> starting from a term t, we can repeat the reduction t = distrib(t) until a fix-point is obtained and then factorize with t = facto(t)

Example

- - ø distrib(t) = ?
- Add new rules to propagate the application of the rules
 - @ distrib(x+y) = distrib(x) + distrib(y)
 - \circ distrib(x*y) = distrib(x) * distrib(y)
 - øetc.

Consequences

- The congruence should be defined explicitly for each rule and each constructor
- The fix-point should be defined explicitly
- There is no separation between the transformation and the control and thus,
 - more difficult to understand
 - orules are not reusable

What we would like

- control rule application by
 - specifying the "traversal" of a term (i.e. apply the rules on the sub-terms)
 - Reeping separate the rules and the control (strategy)

Solution

- Use strategies
- Combine elementary transformations
- Examples

```
dnf = innermost(DL <+ DR <+ ...)</pre>
```

$$DL: (x+y)^*z \rightarrow (x^*z)+(y^*z)$$

$$DR: z^*(x+y) \rightarrow (z^*x)+(z^*y)$$

Elementary strategies

Rewrite rule

- \odot A rule R : g \rightarrow d is an elementary strategy
- \odot Examples : $R = a \rightarrow b$

 - @ (R)[b] = fail
 - \circ (R)[f(a)] = fail

Identity and failure

- oid: does nothing but doesn't fail
- @ fail: fails all the time
- Examples

$$o(id)[a] = a$$

$$(id)[b] = b$$

Composition

- @ S1; S2
- Apply S1, then S2
- Fails if S1 or S2 fail
- Examples

$$\circ$$
 (a \rightarrow b; b \rightarrow c)[a] = c

$$\circ$$
 (b \rightarrow c; a \rightarrow b)[a] = fail

Choice

- @ S1 <+ S2
- Apply S1. If it fails, apply S2
- Examples

$$\circ$$
 (b \rightarrow c \leftarrow c \rightarrow d)[a] = fail

Some equivalent strategies

```
    id; s = s
    s; id = s
    id <+ s = id</li>
```

Advanced strategies

- @repeat(s) = try(s ; repeat(s))
- Examples

$$\circ$$
 (try(b \rightarrow c))[a] = a

$$\circ$$
 (repeat(a \rightarrow b))[a] = b

$$\circ$$
 (repeat(b \rightarrow c \leftarrow a \rightarrow b))[a] = c

$$\circ$$
 (repeat(b \rightarrow c))[a] = a

Traversal primitives

- > apply a strategy to one or several direct descendants
 - © congruence
 - apply a (different) strategy to each descendant of a constructor
 - @ all
 - apply a strategy to all descendants
 - @ one
 - apply a strategy to one descendant

Congruence

- $\mathfrak{oc}(S_1,...,S_n)$ for each constructor \mathfrak{c}
- Examples
 - $\circ (f(a \rightarrow b))[a] = fail$

 - \circ (g(try(b \rightarrow c), try(a \rightarrow b)))[g(a,a)] = g(a,b)
- @ Exercise
 - ødefine the strategy map for the lists built on (cons,nil)

Generic congruence

- @all(S), fails if S fails on one of the descendants
- Application on constant: all(S)[cst] = cst
- @Examples
 - $(all(a \rightarrow b))[f(a)] = f(b)$
 - \circ (all(a \rightarrow b))[g(a,a)] = g(b,b)
 - \circ (all(a \rightarrow b))[g(a,b)] = fail
 - \circ (all(a \rightarrow b))[a] = a
 - $(all(try(a \rightarrow b)))[g(a,c)] = g(b,c)$

Generic congruence

- one(S), fails if S cannot be applied at least on one of the descendants
- Application on constant: one(S)[cst] = fail
- Examples
 - \circ (one(a \rightarrow b))[f(a)] = f(b)
 - \circ (one(a \rightarrow b))[g(a,a)] = g(a,b)
 - \circ (one(a \rightarrow b))[g(b,a)] = g(b,b)
 - \odot (one(a \rightarrow b))[a] = fail

Traversal strategies

- oncebu(S) = one(oncebu(S)) <+ S
- oncetd(S) = S <+ one(oncetd(S))</pre>
- o innermost(S) = repeat(oncebu(S))
- outermost(S) = repeat(oncetd(outermost(S)))
- obottomup(S) = all(bottomup(S)); S
- o topdown(S) = S ; all(topdown(S))
- o innermost(S) = bottomup(try(S ; innermost(S)))

Strategies in Tom

Elementary constructions

- Identity
- @ Fail
- Sequence
- Choice
- @ All
- One
- @ mu

Utilisation

- A strategy has type Strategy
 - Strategy s = `Identity();
- @a term is Visitable (i.e. implements the interface)
 - Visitable t = `a();
- A strategy can be applied on a term
 - result = s.visit(t);
- A strategy preserves the type
 - @ Term t = `a();
 - Term result = (Term) s.visit(t);

Elementary strategy in TOM

```
%strategy RewriteSystem extends Fail() {
  visit Term {
    a() -> b()
  }
}
```

Strategy definition

```
Strategy Try(Strategy S) {
 return `Choice(S,Identity())
Strategy Repeat(Strategy S) {
 return `mu(MuVar("x"),Choice(Sequence(S,MuVar("x")),Identity()));
Strategy OnceBottomUp(Strategy S) {
 return `mu(MuVar("x"),Choice(One(MuVar("x")),S));
 \odot Exercise: implement innermost(a \rightarrowb)
```

Examples

```
Strategy rule = new RewriteSystem();
Term subject = `f(g(g(a,b),g(a,a)));
`OnceBottomUp(rule).visit(subject);
`Innermost(rule).visit(subject);
`Repeat(OnceBottomUp(rule)).visit(subject);
```

InnerMost

```
Strategy rule = new RewriteSystem();

Term subject = `f(g(g(a,b),g(a,a)));

Strategy innermost =
   `mu(MuVar("x"),Sequence(All(MuVar("x")),Choice(Sequence(rule,MuVar("x")),Identity)));

innermost.visit(subject));
```

Question

- How to compute result sets
- Example
 - f(g(g(a,b),g(a,b)))
 - find x such that g(x,b) matches a sub-term

Solution

Consider

$$s(col): g(x,b) \rightarrow col.add(x)$$

Apply

Try(BottomUp(s(col)))

Enumerate col

Codage

```
%strategy RewriteSystem(c:Collection) extends Identity() {
  visit Term {
     q(x,b()) \rightarrow \{ collection.add(`x); \}
Collection collection = new HashSet();
Strategy rule = `RewriteSystem(collection);
Term subject = f(g(g(a,b),g(c,b)));
`Try(BottomUp(rule)).visit(subject);
System.out.println("collect: " + collection);
```

Codage

```
%strategy RewriteSystem(c:Collection) extends Identity() {
  visit Term {
     q(x,b()) \rightarrow \{ collection.add(`x); \}
Collection collection = new HashSet();
Strategy rule = `RewriteSystem(collection);
Term subject = f(g(g(a,b),g(c,b)));
`Try(BottomUp(rule)).visit(subject);
System.out.println("collect: " + collection);
```

Program optimization

```
%gom {
  module Term
  Bool = True()
         | False()
          | Neg(b:Bool)
         | Or(b1:Bool, b2:Bool)
         | And(b1:Bool, b2:Bool)
          | Eq(e1:Expr, e2:Expr)
  Expr = Var(name:String)
       | Cst(val:int)
       | Let(name:String, e:Expr, body:Expr)
       | Seq(Expr*)
       | If(cond:Bool, e1:Expr, e2:Expr)
       | Print(e:Expr)
       | Plus(e1:Expr, e2:Expr)
```

If(Neg(b),i1,i2)->If(b,i2,i1)

```
public Expr optiIf(Expr expr) {
       %match(Expr expr) {
          If(Neg(b),i1,i2) -> { return `opti(If(b,i2,i1)); }
          x -> { return `x; }
       thro
                 Let("i",Cst(0),If(Neg(Eq(Var("i"),Cst(10))),
                  Seq(Print(Var("i")),Let("i",Plus(Var("i"),Cst(1)),Var("i"))),Seq()))
Expr
                 OPTI p4 =
                 Let("i",Cst(0),If(Neg(Eq(Var("i"),Cst(10))),
                  Seq(Print(Var("i")),Let("i",Plus(Var("i"),Cst(1)),Var("i"))),Seq()
```

```
System.out.println("p4 = \n'' + p4);
System.out.println("OPTI p4 = \n'' + optiIf(p4));
```

If(Neg(b),i1,i2)->If(b,i2,i1)

Can we use strategies?

```
Simpler problem:
      > Find all constants in a program
 %strategy stratPrintCst() extends `Fail() {
     visit Expr {
        Cst(x) -> { System.out.println("cst: " + `x); }
`TopDown(Try(stratPrintCst())).visit(p4);
```

cst: 0 cst: 10 cst: 1

Another solution

```
%strategy FindCst() extends `Fail() {
           visit Expr {
              c@Cst(x) -> { return `c; }
        %strategy PrintTree() extends `Identity() {
           visit Expr {
              x -> { System.out.println(`x); }
`TopDown(Try(Sequence(FindCst(),PrintTree()))).visitLight(expr);
            Cst(O)
            Cst(10)
            Cst(1)
```

Back to the optimizer

```
public Expr optiIf(Expr expr) {
      %match(Expr expr) {
         If(Neg(b),i1,i2) -> { return `opti(If(b,i2,i1)); }
         x -> { return `x; }
      throw new RuntimeException("strange term: " + expr);
   %strategy OptIf() extends `Fail() {
      visit Expr {
         If(Neg(b),i1,i2) -> { return `If(b,i2,i1); }
```

Back to the optimizer

```
%strategy OptIf() extends `Fail() {
   visit Expr {
        If(Neg(b),i1,i2) -> { return `If(b,i2,i1); }
   }
}
```

System.out.println("OPTI p4 = \n'' + \innermost(OptIf()).visit(p4));

`Sequence(Innermost(OptIf()),PrintTree()).visitLight(p4);

What do we have?

- efficient data-structures (maximal sharing)
- rewrite rules (labeled and unlabeled)
- strategies (congruence, parameterized, etc.)
- Ø Ø, A, and AU matching (non-linear)
- anti-patterns: !conc(_*,a(),_*)
- everything, smoothly integrated into Java