Strategic rewriting in Java




Programming with
rewrite rules

@ Advantages

@ matching is an expressive mechanism

@ rules express elementary ftransformations
@ Limitations

@ rewrite systems are often non-terminating and
non-conflluent

@ usually, we dont want to (try to) apply all the
rules in the same time




Example of non-terminating
rewrite system

(x+y)*z — (x*2)+(y*2)
z*(x+y) = (2*x)+(z*y)
(x*2)+(y*z) = (x+y)*z

(2*x)+(z*y) = z*(x+y)




Control rule application

@ Classical solution

@ introduce a new operator  to reduce the set
of rules used for normalization

@ | = r becomes () = r'

@ operator f is used fo control the rules to be
applied




Encoding the control

((x+y)*2) — (x*2)+(y*2)

(2*(x+y)) — (2*%)+(z*y)
(x*2)+(y*2)) — (x+y)*z
((Z*x)+(z*y)) = z*(x+y)

D starting from a term t, we can repeat the
reduction until a fix-point is
obtained and then factorize with




Example

@ Reduce t = a + ((a+b)*c)
adistrib(t) = ?

® Add new rules fo propagate the application of
the rules

o distrib(x+y) = distrib(x) + distrib(y)
a distrib(x*y) = distrib(x) * distrib(y)

@ etc.




Consequences

@ The should be defined explicitly for
each rule and each constructor

@ The should be defined explicitly

@ There is no separation between the
transformation and the control and thus,

@ more difficult to understand

@ rules are not reusable




What we would like

@ control rule application by

@ specifying the “traversal” of a term (i.e. apply the
rules on the sub-terms)

@ keeping separate the rules and the control
(strategy)




Solution

@ Use strategies
@ Combine elementary transformations

@ Examples
dnf = (DL <+ DR
DL : (x+y)*z — (x*2)+(y*2)

DR : z¥(x+y) — (2*x)+(z*y)



Elementary strategies




Rewrite rule

@ A rule IS an elementary strategy

®@Examples : R=a — b




Identity and failure

@ id: does nothing but doesnt fail
@ fail: fails all the time
@ Examples

o(id)a] = a

@ (id)[b] = b

@ (fail)la] =




Composition

@Sl ; S2
@ Apply S1, then S2
@ Fails if S1 or S2 fail
@ Examples

@(a—=b ;b — ca

@(a — b ; ¢ — d)[a]

(b —c ;a— b)d]




Choice

@S] <+ S2
@ Apply Sl. If it fails, apply S2

@ Examples
@ (a —= b <+ b —= ¢)[d]

@ (b — c <+ a— b)d]

@ (b — c <+ c— d)a

@ (b —c<id)a] =a




Some equivalent
strategies

@id ;s =5
@s ;id =s
@id <+ s = id
@ fail <+ s =5
@s <+ fail = s
@ fail ; s = fail

@ s ; fail # fail (pourquoi ?)




Advanced strategies

atry(s) = s <+ id

o (s) = try(s ; Q)

@Examples
o (try(b — ¢))la] = a
(@ = b))lal = b
(b = c<+a—Db)la] =c

(b = ¢))la] = a




Traversal primitives

> apply a strategy to one or several direct
descendants

D

@ apply a (different) strategy to each descendant
of a constructor

D

@ apply a strategy to all descendants
@

@ apply a strategy to one descendant




Congruence

o for each constructor

@Examples

@ (f(a — b))ld] =

o (f(a — b))[f(a)] = f(b)

@ (f(a — b))[f(b)] =

o (g(try(b — c) , try(a — b)))lg(a,a)] = g(a,b)
@ Exercise

@ define the strategy for the lists built on
(cons,nil)




Generic congruence

aall(S), fails if S fails on one of the
descendants

a@Application on constant: all(S)[cst] = cst

@Examples
(@ — b))[f(a)] = f(b)
(@ = b))lg(a,a)] = g(b,b)
(@ — b))lg(a,b)] =
(@ — b))la] = a
(try(a — b)))lg(a,c)] = g(b,c)




Generic congruence

aone(S), fails if S cannot be applied at
least on one of the descendants

aApplication on constant: one(S)lest] =

@Examples
@ (one(a — b))[f(a)] = f(b)
@ (one(a — b))lg(a,a)] = g(a,b)
@ (one(a — b))[g(b,a)] = g(b,b)
@ (one(a — b))la] =




Traversal strategies

(S) = one( (S)) <+ S
(S) = S <+ one( ©))
(S) = repeat( )
(S) = repeat(oncetd( Q)
(S) = all( (S) ;S
(S) =S ; all( S)

(S) = bottomup(try(s ;




Strategies in Tom




Elementary constructions

@ Identity
@ Fail

@ Sequence
@ Choice

@ All

@ One

@ Mmu




Utilisation

@ A strategy has type
3 s = ‘Identity();
@a term is (i.e. implements the interface)
® t = “a();
@ A strategy can be applied on a term
@ result = swisit(t);
@ A strategy preserves the type
@ Term t = “a();
@ Term result = (Term) swisit(t);




Elementary strategy in
TOM

%strategy extends Fail() ¢

!
a() -> b()
;
;




Strategy definition

Strategy Try(Strategy S) {
return “Choice(S,Identity())

?
Strategy (Strategy S) {

return “mu(MuVar("x"),Choice(Sequence(S,MuVar("x")),Identity()));

}
Strategy (Strategy S) {

return “mu(MuVar("x"),Choice(One(MuVar("x")),S));
}

@ Exercise : implement innermost(a —b)




Examples

Strategy rule = new RewriteSystem();
Term subject = “f(g(g(a,b).g(a,a))):
“OnceBottomUp(rule).visit(subject);
“Innermost(rule).visit(subject);

"Repeat(OnceBottomUp(rule))visit(subject);




InnerMost

Strategy rule = new RewriteSystem();
Term subject = “f(g(g(a,b).g(a,a)));

Strategy innermost =
"mu(MuVar("x"),Sequence( All(MuVar("x")),Choice(Sequen
ce(rule,MuVar(''x")),Identity)));

innermost.visit(subject));




Question

@ How to compute result sets
@ Example

@ f(g(g(a,b).g(a,b)))

@ find x such that g(x,b) matches a sub-term




Solution

@ Consider

s(col) : g(x,b) — col.add(x)

@ Apply
Try(BottomUp(s(col)))

@ Enumerate




Codage

%strategy RewriteSystem(c:Collection) extends Identity() {
visit Term §
g(x,b()) -> { collection.add("x); }

;
;

Collection collection = new HashSet();
Strategy rule = "RewriteSystem(collection);
Term subject = “f(g(g(a,b).g(c,b)));
“Try(BottomUp(rule)).visit(subject);
System.out.printin(“collect : " + collection);




Codage

%strategy RewriteSystem(c:Collection) extends Identity() {
visit Term §
g(x,b()) -> { collection.add("x); }

;
;

Collection collection = new HashSet();
Strategy rule = "RewriteSystem(collection);
Term subject = “f(g(g(a,b).g(c,b)));
“Try(BottomUp(rule)).visit(subject);
System.out.printin(“collect : " + collection);




Program optimization

%gom {
module Term
Bool = True()
| False()
| Neg(b:Bool)
| Or(b1:Bool, b2:Bool)
| And(b1:Bool, b2:Bool)
| Eq(el:Expr, e2:Expr)
Expr = Var(name:String)
| Cst(val:int)

| Let(name:String, e:Expr, body:Expr)
| Seq( Expr* )

| If(cond:Bool, el:Expr, e2:Expr)

| Print(e:Expr)

| Plus(el:Expr, e2:Expr)




If(Neg(b),il,i2)->If(b,i2,il)

public Expr optilf(Expr expr) {

%match(Expr expr) {
If(Neg(b),i1,i2) -> { return “opti(If(b,i2,i1)); }
x -> { return °x; }

System.out.printin("p4 = \n" + p4);
System.out.printIn("OPTI p4 = \n" + optilf(p4)):




If(Neg(b),il,i2)->If(b,i2,il)

public static Expr optiNaive(Ex




Can we use strategies?

Simpler problem:
> Find all constants in a program

%strategy stratPrintCst() extends “Fail() {
visit Expr {
Cst(x) -> { System.out.printin("cst: " + *x); }
}
}




Another solution

%strategy FindCst() extends “Fail() §
visit Expr {
c@Cst(x) -> { return c; }
}

}
%strategy PrintTree() extends “Identity() {

visit Expr {
x -> { System.out.printin(x); }
}
}




Back to the optimizer

public Expr optilf(Expr expr) {
%match(Expr expr) {
If(Neg(b),i1,i2) -> { return “opti(If(b,i2,i1)); }
X -> § return “x; }
}

throw new RuntimeException("strange term: " + expr);

%strategy OptIf() extends “Fail() {
visit Expr {
If(Neg(b),i1,i2) -> { return “If(b,i2,i1); }




Back to the optimizer

%strategy OptIf() extends “Fail() {
visit Expr {
If(Neg(b),i1,i2) -> { return ‘If(b,i2,i1); }
;
}




What do we have ?

o efficient data-structures (maximal sharing)
@ rewrite rules (labeled and unlabeled)

@ strategies (congruence, parameterized, etc.)
@ 2, A, and AU matching (non-linear)

@ anti-patterns: 'conc(_*a(),_*)

@ everything, smoothly integrated into




